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Noise-induced memory in extended excitable systems
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~Received 23 March 1999; revised manuscript received 13 December 1999!

We describe a form of memory exhibited by extended excitable systems driven by stochastic fluctuations.
Under such conditions, the system self-organizes into a state characterized by power-law correlations, thus
retaining long-term memory of previous states. The exponents are robust and model independent. We discuss
implications of these results for the functioning of cortical neurons as well as for networks of neurons.

PACS number~s!: 87.10.1e, 87.19.La
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Neurons receive thousands of perturbations affecting
transmembrane voltage at various points of the syna
membrane. Recent experimental evidence has shown a
nonlinearities@1# at the dendrites of cortical neurons, impl
ing that models representing these neurons must have m
nonlinear spatial degrees of freedom.

What are the dynamical consequences of these distrib
nonlinearities for neuronal function? The answer is not i
mediately certain. The prevailing view, since the work
Lapicque in 1907@2#, has been that all input regions~i.e.,
dendrites! are linear, so neurons can be represented a
single compartment. In this view incoming excitations a
linearly integrated, and whenever the resulting value exce
a predefined threshold an action potential is generated. T
the neuron is considered to have a single nonlinear degre
freedom: the spatial region where the thresholding dynam
takes place.

This paper describes a robust form of noise-induc
memory which appears naturally as a direct consequenc
including distributed nonlinearities in the formulation of
neuron’s input region. Besides having relevance at the ne
level, it touches other areas of biology where excitable m
els have been used, as is the case for models of fores
propagation, spreading of epidemics, and noise-indu
waves @3#. From the outset, it needs to be noted that
phenomena to be described do not depend on the typ
excitable model one uses.

To show the essence of the main point, we adapt
Greenberg-Hastings cellular automata model@4# of excitable
media@5#. For the purpose of this paper let us restrict o
selves to the case of a one-dimensional lattice of coup
identical compartments (n51, . . . ,N), with open boundary
conditions. Each spatial location is assigned a discrete s
Sn

t which can be one of three—quiescent, excited,
refractory—with the dynamics determined by the transit
rules: E→R ~always!, R→Q ~always!, Q→E ~with prob-
ability r, or if at least one neighbor is in theE state!, and
Q→Q ~otherwise!. Excitable systems have a refractory p
riod during which no re-excitation is possible; we introdu
it by delaying the transition from theR state to theQ state for
r time steps. Thus the only two parameters in the system
r, which determines the probability that an input to a giv
site n result into an excitation~i.e., a transitionQ→E); and
r determining the time scale of recovery from the excit
state. It turns out that the precise value ofr is not crucial, but
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choosing a value ofr at least equal to or larger than the valu
of N eliminates a number of numerical complications@6#.

A dendritic region bombarded by many weak synap
inputs corresponds to a relatively small value forr ~here
1022). The typical response of the model under such con
tions is illustrated in Fig. 1. One can see that, starting fr
arbitrary initial conditions, eventually an element is first e
cited ~left arrow in Fig. 1!. This initiates a propagated wav
front which collides with others initiated in the same wa
somewhere else in the system. After the completion of
refractory period the process repeats itself, originating
other wave front~right side of Fig. 1!. An immediately ap-
parent feature is the overall similarity of any two consecut
fronts. The large-scale shape is preserved, despite the
that each element is being randomly perturbed.

We found that important information can be extract
from an analysis of the dynamics of the first element to
excited in each wave front, denoted asL(n). Figure 2 shows
the results of numerical simulations whereL(n) of each
wave front is plotted as a function of time. Note the tenden
of L(n) to remain near the previous leading site, which
especially apparent in the larger systems. To quantify
dynamics, we numerically estimated̂uLt(n)2Lt11(n)u&,
which is how far~on average! from its current position the
leader will be in thenextwave front. The resulting distribu
tions ^P(Dn)& of thesejumpsare plotted in Fig. 3~A! for all
system sizes. The largest probability corresponds to the
in which the wave front is first triggered from the same e
ment as in the previous event. The power lawnp tells us that
there is always a nonzero probability for a very long jum

FIG. 1. An example of two consecutive noise-induced wa
fronts. Note the similarity in the overall shape of the two conse
tive wave fronts, which is typical. The arrows indicate the earli
activated site@i.e., the leaderL(n)# in each wave front.
5654 ©2000 The American Physical Society
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indeed as large as the entire system. Therefore, the cuto
the power law is the only difference between the results
tained with small or large N@see panel~A! in Fig. 3#.

Another related measure is the estimation of the aver
distance the leader drifts from its current position as a fu
tion of time lagDt ~t is always given in wave front’s units!.
The results are plotted in panel~B! of Fig. 3. The fact that
the log-log plot ofuDnu vs Dt is linear implies a power law
;DtH. The best-fit line of the results in Fig. 3~B! gives an
exponentH50.19. For this case it is known that the pow
spectrum decays as 1/f b, and thatb relates withH as b
52H1151.4 ~a random walk will have similar statistica
behavior, but with an exponentH51/2). These power laws
with cutoffs given only by the system size, imply a lack
characteristic scale~both in time and space!, a situation

FIG. 2. Plot of the consecutive positions of the leading elem
in each firing event~i.e., the ones identified by the arrows in Fig. 1!.
The tendency of the leader is to remain near the previous lea
site, a fact that is visually more apparent in the large systems.~The
system size increases fromN5128 at the top panel toN54096 at
the bottom panel.r51022 for all panels.!
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which resembles some of the scenarios described in the
text of self-organized criticality@7#.

What causes this memory is trivially simple: the first s
to be activated by the noise will necessarily be the first~ex-
actly afterr time steps! to be recovered and consequently
be ready to be re-excited. The two adjacent sites which w
excited by the leader will recover only afterr 11 time steps,
and so on for the other adjacent sites. Thus excitation by
noise will always be biased by the previous sequence of
citation. Therefore, this ‘‘memory’’ can be preserved as lo
as the cycle of recovery~in this model ther time steps! is not
affected by the noise. Regarding the dependence with
noise intensity, for vanishingly smallr all sites will have
enough time to cycle to theQ state, and no memory will be
kept ~see below!.

Exponents are robust:The phenomenology and its powe
laws are not model dependent. We obtained similar res
with various numerical models, so we sought the simpl
numerical simulation scheme, which is a simple kinema
description of the motion of these noise-induced propaga
excitable waves in the limit of infinite system size and lo
noise amplitude. The algorithm is as follows~see the cartoon
in Fig. 4!. Time and space are considered continuous v
ables. Excitations can initiate a wave front at any point,
the first step of the algorithm then is to distribute all potent
excitation spots at random locations and times, as a t
dimensional~2D! Poisson process inx-t space with a prob-
ability r(x,t) which we will take to be constant for now
Filled circles in Fig. 4 denoteda through e correspond to
some of these events. The algorithm scan the space sear
for theearliestexcitation point~i.e., in the figure is the point
a). Two wave fronts come forth from that point with un
speed. A front dies when it either reaches the boundary~as in
the initial case in the figure! or upon colliding with other
fronts as the one initiated by event labeledb ~the dotted lines
indicate two of these interrupted fronts!. So, after locating
the earliest pointa, all other points satisfyingDt.uDxu ~i.e.
laying inside the space-time cone with vertex ina) are guar-
anteed to be ‘‘ahead’’ of pointa. We now proceed to look
for the earliest points which arenot ahead ofa ~i.e., are
outside the cone! until all other points are ahead of our cu
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FIG. 3. @~A! and ~C!# Distribution of the dif-
ferences betweenL(n) of two consecutive wave
fronts. Results in~A! correspond to the discret
model, while results plotted in~C! are from the
kinematic simulation. In both cases the expone
p;1.4. @~B! and ~D!# Mean drift of L(n) as a
function of time lagDt. Results in~B! are from
the discrete model, and those plotted in~D! are
from the kinematic simulation. The mean dri
scales astH, the best-fit line givesH50.19 in the
case of the discrete model, andH50.2 for the
results using the kinematic description. The sy
tem sizes for the discrete model areN5128, 256,
512, 1024, 2048, and 4096 from bottom to to
plots, and the noiser51022. For the kinematical
description the system size is fixed~unit interval!,
and the noise densityr(x,t) increases from bot-
tom to top—as determined by the steep part
the plots—from 1026, 1025, 1024, and 1023.
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rent collection. Using relativity terms, we scan the Poiss
process for the largest collection of mutually spacelike po
containinga, then locate the ‘‘earliest’’ point~in our refer-
ence frame! and repeat iteratively, as in a convex hull alg
rithm on Minkowski metrics. The results of such simulatio
are plotted in Fig. 3 alongside of those described for
discrete model. Jump distributions are plotted for four no
levels in panel~C!. The mean drifts as a function of time la
are plotted in panel~D!. It can be seen that there is a remar
able agreement between the numerical values of both sca
exponents. It needs to be noted that the kinematic algori
used here is equivalent@10# to the polynuclear growth~PNG!
model @8# studied extensively in the context of 1D grow
processes. It has been shown that at least in one dimen
the PNG asymptotic behavior belongs to the Kardar-Pa
Zhang universality class@9#.

How long does it remember?For the sake of demonstra
tion, the dissipation of memory can be estimated by fi
imposing an initial activation sequence in the system~i.e.,
writing! and then calculating the Hamming distance betwe
the initial and subsequent wave front separated byDt. Using
the discrete model we impose an arbitrary initial configu
tion of excitation, in this case the sinusoidal pattern plot
in the inset of panel~A! of Fig. 5. As time passes, the patte
deforms as shown by the snapshots at times 2, 5, 10, an
in the figure, which can be estimated by the Hamming d
tance defined as

^D~ t !&5
1

N (
n51

N

uSn
t 2Sn

t1Dtu, ~1!

FIG. 4. Cartoon of the kinematic algorithm~see text!.

FIG. 5. ~a! The Hamming distancêD(t)& from the original
sinusoidal pattern as a function of time. The inset shows the in
wave front and at time steps: 2, 5, 10, and 50.N5256, r51022

means, and SEM of 256 realizations.~b! The Hamming distance
between two consecutive wave fronts is a monotonically decrea
function of noiser ~means and SEM of 256 realizations!.
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whereS are the initial and subsequent states, ranked by
excitation order of each element. Means and standard e
of the mean~SEM! D(t) were calculated, and the results a
plotted in the main body of Fig. 5~a! as a function of time. It
can be seen that the Hamming distance follows a power
up to times of about 50 events. It was already mentioned
for vanishingly smallr no memory of previous states can b
maintained, since this condition implies that all the eleme
have enough time to go to theQ state preceding the excita
tion. Thus, rather paradoxically, more noise implies a lon
memory. This is illustrated by the results in Fig. 5~b!, where
D(t) was calculated for increasing noiser. Thus we call this
phenomenon a form ofnoise-induced memory.

Inhomogeneities:It is important to address the effect o
parameter fluctuations, since in any real system these va
will not be constant in space or time. The same featu
endowing our system with a ‘‘memory’’ help to understan
its sensitivity to variations in the parameters. For instance
spatially varying noise level will result in the fronts bein
effectively pinned at the location of maximum nois
strength; as shown in Fig. 6~a!, a variation of only 10% in
noise density can give rise to complete localization of
front. This feature can be understood readily within the
nematic model, if we note that the fronts, which repres
waves of constant speed, are invariant under Lorentz tra
forms, as depicted in panel~b! of Fig. 6. Furthermore, the
homogeneous Poisson point process used in the kinem
model is also invariant under Lorentz transformations. Th
of the way the ‘‘average’’ layer of Fig. 6~b! looks: its aver-
age spacingDt, average tilt̂ dt/dx&, and point densityr are
related by 1/Dt5A2r coshu, whereu is the parameter to the
Lorentz transform; then̂dt/dx&5tanhu. Looking back to
Fig. 6~A!, these relations hold as long as the mean separa
between adjacent points in the Poisson process is sm
than the variations inr. Since Fig. 6~a! has to satisfy a con-
stant averageDt independently of the point process densi
we obtainA2r coshu5A2rmax, wherermax is the maximum
of r(x); this implies that

l

ng

FIG. 6. ~a! A spatial modulation of the noise density causes
fronts to be permanently pinned. Shown is the kinematic mo
where the density of points has a cosinusoidal modulation on thx
axis of 10%. Except for the darkened ones, only one out of
fronts is shown.~b! Fronts are invariant under a Lorentz transform
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^dt/dx&5A12
r

rmax
.

Implications for learning and memory:The dynamics de-
scribed here might have important consequences for ne
‘‘plasticity.’’ This is the name given, in neuroscience, to th
process by which interconnected neurons can strengthe
weaken their synaptic contacts to modulate their commu
cation. The dogma is that memory and learning in anim
brains are based on long-term changes of that synaptic
nectivity. An important point in contemporary thinking a
sumes that whatever the plastic process is, it must be ab
modify the synaptic strength during a time window given
the longest time scale in the neuron dynamics. This wind
is given by the relaxation kinetics of the membrane, and i
most of the order of hundreds of milliseconds@11#, a length
which is considered too short for producing most of the n
essary synaptic changes. Our results can solve this disc
ancy, since we have shown that the correlated activity la
orders of magnitude more than the longest time scale of
model ~i.e., the value ofr ). Thus the implication for rea
neurons will be that the spatial activity along the dendri
established by a given synaptic input will remain correla
for hundreds of firing events after the particular event.
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other words, the neuron can in this way remember the lo
tion of the events that caused a firing. This correlated
quence of activation can in turn influence the spatial dis
bution of the molecular machinery supposedly respons
for the long-term synaptic modification necessary to rem
ber.

The work reported here is restricted, for simplicity, to t
one-dimensional case and the use of the simplest conceiv
excitable model. Nevertheless, the phenomenon is show
be robust, and similar results can be easily obtained us
more detailed models. If the dynamic described here exis
such in real neurons, it would be very relevant to neu
functioning.
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